

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CONTEXT-BASED MOBILE SECURITY ENCLAVE

by

Joey C. Carter

September 2012

 Thesis Advisor: Gurminder Singh
 Thesis Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Context-Based Mobile Security
Enclave

5. FUNDING NUMBERS

6. AUTHOR(S) Joey C. Carter
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number: N/A.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Currently, there are no secure access control methods of controlling
restricted material access on a mobile device using context-based
authentication methods. Simple challenge/response protocols do not provide
the security required for some restricted information. A lost/misplaced
device or compromised password can easily lead to the compromise of any
restricted information to which the device may have access. Due to the
inherent portability of a mobile device, a broader, more comprehensive set of
access controls is required.
 This thesis will research and build a prototype application that will
allow access to restricted information, stored on the device itself, based on
a set of predefined contexts using the device’s own hardware.

14. SUBJECT TERMS Android Programming, Security Application,
Application Enclave

15. NUMBER OF
PAGES

63
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CONTEXT-BASED MOBILE SECURITY ENCLAVE

Joey C. Carter
Lieutenant, United States Navy

B.S., University of Arizona, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Joey C. Carter

Approved by: Gurminder Singh
Thesis Advisor

John Gibson
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Currently, there are no secure access control methods of

controlling restricted material access on a mobile device

using context-based authentication methods. Simple

challenge/response protocols do not provide the security

required for some restricted information. A lost/misplaced

device or compromised password can easily lead to the

compromise of any restricted information to which the

device may have access. Due to the inherent portability of

a mobile device, a broader, more comprehensive set of

access controls is required.

This thesis will research and build a prototype

application that will allow access to restricted

information, stored on the device itself, based on a set of

predefined contexts using the device’s own hardware.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOBILE SECURITY ENCLAVE2
B. OBJECTIVES ...2
C. ORGANIZATION3

II. BACKGROUND ..5
A. INTRODUCTION5
B. BRING YOUR OWN DEVICE5
C. ANDROID OPERATING SYSTEM7
D. SECURITY ...9
E. MOBILE DEVICE SENSORS10

1. International Mobile Subscriber Identity10
2. Cellular Identification Number12
3. Global Positioning System12
4. Application Program Interfaces14

F. SUMMARY ...15

III. ARCHITECTURE ...17
A. INTRODUCTION17
B. APPLICATION CONTEXT DESIGN17

1. Location Verification Context18
a. Cellular Identification Number19
b. Global Positioning System19

2. User Verification Context20
a. Challenge-Response21
b. International Mobile Subscriber

Identity21
C. ENCLAVE DESIGN21
D. SUMMARY ...23

IV. IMPLEMENTATION ...25
A. INTRODUCTION25

1. Key Features25
B. ADMINISTRATOR26

1. Application Installation26
a. Permissions27

2. Admin Settings27
a. Protection Settings28
b. Change Password29
c. Change IMSI30
d. Change CellID31
e. Change Geolocation32

3. Add App33
4. Start Hiding34

 viii

C. USER ..35
1. Launching a Protected Application35

a. Contexts Satisfied36
b. Contexts Not Met36

D. SUMMARY ...37

V. CONCLUSIONS AND FUTURE WORK39
A. CONCLUSIONS39
B. FUTURE WORK40

1. User Identification41
2. Multi-level Contexts41
3. Remote Context Changes42
4. User Termination Resistance42

LIST OF REFERENCES ..45

INITIAL DISTRIBUTION LIST47

 ix

LIST OF FIGURES

Figure 1. Android Application Architecture.................8
Figure 2. IMSI Breakdown..................................11
Figure 3. Context Check Use Case..........................18
Figure 4. Context Pseudo-code.............................20
Figure 5. Application Installation Screen.................27
Figure 6. Application Configuration Screens...............28
Figure 7. Application Protection Selection Screen.........29
Figure 8. Application Password Change Screen..............30
Figure 9. Application Change IMSI Screen..................31
Figure 10. Application Change CID Screen...................32
Figure 11. Application Change GPS Screen...................33
Figure 12. Context Monitor Screen..........................36

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

A-GPS Assisted Global Positioning System

ADB Android Debugger

API Application Programming Interface

APK Android Application Package

BSC Base Station Controller

BTS Base Transceiver Station

BYOD Bring Your Own Device

CDMA Code Division Multiple Access

CID Cellular Identification Number

DEX Dalvik Executable

GPS Global Positioning System

GSM Global System for Mobile Communications

HNI Home Network Identity

IDE Integrated Development Environment

IMEI International Mobile Equipment Identifier

IMSI International Mobile subscriber identity

IT Information Technology

LAC Location Area Code

LTE Long-Term Evolution

MCC Mobile Country Code

MNC Mobile Network Code

MSIN Mobile Station Identification Number

NANP North American Numbering Plan

OEM Original Equipment Manufacturer

OS Operating System

PII Personally Identifiable Information

PRN Pseudorandom Number

SDK Software Development Kit

SSL Secured Socket Layer

 xii

SU Super User

SIM Subscriber Identity Module

VM Virtual Machine

 xiii

ACKNOWLEDGMENTS

Many thanks to my advisors, Dr. Gurminder Singh and

Mr. John Gibson, for making this difficult experience as

enjoyable and rewarding as possible. Without your extensive

knowledge and guidance, this thesis would not have been

possible.

I would also like to thank my classmates for all the

assistance they have given me while navigating this

challenging curriculum. I would especially like to thank

Le Nolan for your unselfishness in devoting so much time in

many of the topics our classmates and I struggled through.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

When a natural disaster occurs, within hours first

responders are on the scene. They bring with them a

plethora of equipment to help them aid the victims of the

disaster. Most likely this equipment includes some sort of

mobile device to access restricted personnel

files/information. The security of the data and

communications exchanged is paramount. The current

mechanisms to secure that data restricting its access to a

specified user in a specific situation or location are

insufficient.

As mobile devices penetrate into the daily lives of

personnel with access to restricted data, the risks of

compromise of that data increase. Given how important

mobile devices have become in the daily lives of their

users, better ways of securing information on those devices

are needed. According to the United States Department of

Health and Human Services’ Office for Civil Rights, there

have been more than 420 security breaches in 2009 of the

medical records of 19 million patients [1]. Many of these

breaches involve critical personally identifiable

information (PII) stored on portable electronic devices.

The breaches are results of these devices falling into

malicious hands without the proper security features to

protect the data.

As businesses continually shift to a Bring Your Own

Device (BYOD) policy, the history of security breaches

since 2009 are evidence that the research into securing the

information on those devices has not kept up with the pace

 2

of that shift. Most data securing programs rely on a

simple challenge/response protocol to protect the

information, leaving all of the security in the hands of

the user. A more reliable, administrator controlled set of

security features is needed. An architecture designed

around a mobile security enclave, with device-measured

context access controls, addresses this increased security

need.

A. MOBILE SECURITY ENCLAVE

A mobile security enclave is a method of access

control between a collection of valuable assets and the

mobile device. The enclave contains protected applications

and only allows a user access to them when certain

conditions exist [2]. These conditions, better known as

contexts, are the key to the security of the applications.

They must be out of the control of the user of the system

and difficult to bypass. Hardware sensors of the mobile

device can serve as an adequate set of security contexts to

restrict access to protected applications.

B. OBJECTIVES

The goal of this thesis is to develop a prototype

service that runs on a mobile device and restricts access

to applications installed on the mobile device based on a

set of contexts controlled by an administrator at setup.

The prototype consists of an Android service (application)

that utilizes built-in hardware to measure contexts on

which to grant access to other protected (enclaved)

applications and any data associated with them. In the

initial service, three contexts will be used to grant

 3

access to the enclave: global positioning system

coordinates, base transceiver station identification (CID)

and the international mobile subscriber identity (IMSI)

number.

C. ORGANIZATION

Chapter I provides a brief discussion of the need for

a more secure method of protecting proprietary/restricted

information. The chapter is made up of two sections: One

discusses the idea of the context-based application enclave

and its associated contexts and the other explains the

overall objectives of this thesis.

Chapter II provides a description of existing security

programs and applications. The discussion includes their

strengths and weaknesses and how the prototype Android

service fills the gaps left by these applications. The

Android operating system and included security features,

along with the Android software development kit, are also

discussed.

Chapter III outlines the architectural design used in

creating the prototype Android service. The design of the

contexts, enclave, and administrative functions are also

discussed.

Chapter IV explains the implementation of the

architectural design described in Chapter III. The use of

the Android software development kit (SDK) and its

associated classes are discussed. The administrator

installation and setup are also included in this chapter,

along with user functions and a step-by-step walkthrough.

 4

Chapter V provides the reader with a summary and a

brief overview of the prototype Android service created for

this thesis. It is discussed in this chapter that it is

possible to create an Android application that successfully

protects other Android applications installed on the same

device, using hardware-measured contexts. This chapter

concludes with a discussion of possible future research

related to this effort.

 5

II. BACKGROUND

A. INTRODUCTION

This chapter provides the relevant background

knowledge to support the following chapters. It includes

descriptions of Bring Your Own Device (BYOD) policies, a

discussion of Android Operating System inner-workings and

security and related mobile device components and

capabilities.

B. BRING YOUR OWN DEVICE

Since the advent of the smartphone, more wireless

infrastructure in support of communications and data

exchange is necessary to support the growing use of

personal devices in the workplace. BYOD is a trend of

employees using personally owned devices in their place of

work for both personal and business use. While cost and

convenience are the two dominant positive aspects of BYOD,

there are a few negative aspects to a BYOD policy that,

with good mitigation controls, can be substantially

reduced.

A business that operates a BYOD policy shifts costs of

data plans and devices to the user, can take advantage of

newer technology faster, and have reduced IT support

requirements. Allowing employees to use their personal

devices for business transactions removes the need for both

the employer to provide costly devices to the user and the

need for the user to carry multiple devices. Users also

tend to keep their devices on a faster replacement cycle

than that of the average company, keeping electronic

 6

infrastructure of the business more up-to-date. Since the

company does not provide the devices, the need for IT

support for the hardware is not required (support for

software installed on the users’ devices will most likely

still be necessary, especially if organization-specific

applications are deployed on the devices).

On the other-hand, the BYOD policy does not come

without its risks. To start with, the content provider

loses control over the IT hardware and how it is used.

When businesses issue hardware to their employees, the

devices are usually accompanied by usage policies, which

dictate what can and can’t be done with the device. Almost

every aspect of the devices are managed and controlled by

the management. With a BYOD policy, both business and

personal applications/data are stored on the device. This

leads to a higher possibility of compromise of restricted

business applications/data by other users who may share the

device or worse, malicious software designed with the

intention of compromising said material. Clearly, loss or

theft of the device affects data security whether the

device of corporate-owned or BYOD.

While exercising a BYOD policy, a simple

challenge/response protocol may not meet the restrictive

needs to protect the information/data stored on the device.

Compromise of the devices location, network connection, and

user are not accounted for when utilizing a

challenge/response protocol. A more comprehensive set of

contexts on which to grant access is needed.

 7

C. ANDROID OPERATING SYSTEM

The Android Operating System is built on the Linux

kernel with libraries and Application Programming

Interfaces (APIs), which use Java compatible libraries

based on Apache Harmony (an open source Java implementation

developed by the Apache Software Foundation). Android APIs

are a set of programming code that allows applications to

communicate with the operating system [3]. The set of APIs

that are included in the Android Software Development Kit

(SDK) is what allows the programmer to create applications

on or for the Android OS that uses the device’s hardware.

Many of the APIs are open to the public and give access to

services such as basic telephony data, location specific

information (which is used in this thesis), and GSM and

CDMA functions. Others are closed to the public and need

special permissions for use, or are strictly controlled by

the original equipment manufacturers (OEM) [3]. Figure 1

depicts the Android programming architecture as presented

on the Android Developer’s site [4].

 8

Figure 1. Android Application Architecture

The Android operating system uses the Dalvik virtual

machine with “just-in-time” compilation to run Dalvik

Executable (DEX) code. The Dalvik virtual machine is a

register-based process virtual machine used to run

applications in the Android Operating System. Designed by

Google Engineer Dan Bornstein with contributions from other

Google engineers, it minimizes memory requirements while at

the same time allowing multiple VMs to run at the same time

[5]. Dalvik relies on the operating system for process

isolation, memory management, and threading control. At

compile time, a tool named dx, which is part of the Android

SDK, reforms the Java Class files of the Java source, which

are first compiled by a Java compiler into DEX code. All

of the DEX files for a single application are then zipped

 9

into a single Android Package file (APK) [6]. These APK

files are how applications are stored on a device.

D. SECURITY

Android applications run what is known as a “sandbox,”

a separate portion of the operating system without access

to other system resources without the permissions of the

user, given at install time. All permissions are coded

when creating the manifest.xml file except one, root

permission. “Rooting” a device is the process of running

code on a device to allow it to attain privileged control

or “root” access within the Android system, allowing

ability to change operating system parameters that are

normally marked read-only. On a rooted device, root user

permissions are not part of the manifest file. Root

permissions are obtained while running the main.java file

with admin privileges (SU) and executing the Process root =

Runtime.getRuntime().exec(“su”) command. Once this

permission is given, the user will not be prompted for root

permissions again for that specific application. As

described on the Android developer page:

A central design point of the Android security
architecture is that no application, by default,
has permission to perform any operations that
would adversely impact other applications, the
operating system, or the user. This includes
reading or writing the user's private data (such
as contacts or e-mails), reading or writing
another application's files, performing network
access, keeping the device awake, etc. [4]

Due to the fact that Android sandboxes, i.e.,

isolates, applications from each other, applications must

explicitly share resources and data. They do this by

 10

declaring the permissions they need for additional

capabilities not provided by the basic sandbox.

Applications statically declare the permissions they

require, and the Android system prompts the user for

consent at the time the application is installed. Android

has no mechanism for granting permissions dynamically (at

run-time) because it complicates the user experience to the

detriment of security [7].

E. MOBILE DEVICE SENSORS

Once necessary permissions have been granted, an

application can access the plethora of hardware sensors

installed in the mobile device using the Android APIs. The

APIs use Java classes built into the Android library, to

give applications the ability to use the built-in sensors

to measure certain aspects of the device’s environment,

allowing use of them as contexts on which to allow access

to other applications.

1. International Mobile Subscriber Identity

International Mobile Subscriber Identity Numbers

(IMSI) were created and formatted to provide the unique

international identification of mobile terminals and mobile

users to enable those terminals and users to roam among

public networks, which offer public network services.

The IMSI assignment guidelines and procedures are

maintained by the IMSI Oversight Council (IOC). Telcordia

Technologies is responsible for administering the

assignment and use of IMSIs in the United States and other

North American Numbering Plan (NANP) countries [8].

Telcordia Technologies, as IMSI Administrator, participates

 11

in the management of all segments of the IMSI, but directly

administers only the Home Network Identity (HNI) segment.

HNIs are assignable to operators of public mobility

services with international roaming capabilities. The HNI

uniquely identifies the home network of a public mobility

service subscriber and contains the Mobile Country Code

(MCC) and the Mobile Network Code (MNC). The remaining

segment of the IMSI, the Mobile Station Identification

Number (MSIN), is directly administered by the network

operator to which the HNI is assigned [8]. Figure 2

depicts the IMSI breakdown.

Figure 2. IMSI Breakdown

The MSIN is the portion of the IMSI that is the unique

identifier used in the context check portion of the

application. The IMSI itself is coded onto the subscriber

identity module (SIM) card, which also stores security

authentication and ciphering information used by the

network providers to authenticate the user to the network

[9]. The SIM card also stores the Ki, a 128-bit value used

in authenticating the SIM to the mobile network [10]. The

SIM card is specifically designed not to allow the

retrieval of the Ki, using the standard card interface used

by the mobile device itself, making access to the Ki

 12

impossible without access to the carrier’s databases and a

poor choice for a context check.

2. Cellular Identification Number

A Cellular Identification number (CID) is a

geographically unique number used to identify a Base

Transceiver Station (BTS) or a sector of a BTS within a

Location Area Code (LAC) [11]. A BTS is a piece of

equipment used in GSM that facilitates communication

between the user equipment (i.e., mobile device) and a

service provider’s network. A LAC is a set of base

stations that are grouped together in order to optimize

signaling. A Base Station Controller (BSC) is the system

that handles allocation of radio channels and controls

handovers of the device from base station to base station.

When the mobile device initially connects to a cell tower,

five numerical codes that represent the network to which

the device is connecting are exchanged in the handshake;

the state of the tower to which device is connected, the

mobile country code, the carrier’s code, the location area

code and the CID [11]. The device uses the CID to assist

the GPS system (if the device is A-GPS capable) to narrow

down its location prior to getting satellite signals. The

geographical uniqueness of the CID makes it a good simple

choice for use as a context in the application.

3. Global Positioning System

Global positioning system, better known as GPS, is a

satellite-based, all-weather navigation system. GPS

utilizing a satellite constellation of 24 active and

4 spare satellites strategically place in precise

 13

geosynchronous orbit all around Earth. The system became

operational in 1994, under the original title NAVSTAR GPS,

under control of the United States Air Force [12].

Essentially, for GPS to work, the mobile device’s GPS

receiver must locate four or more of the satellites in the

constellation and calculate the distances to each to deduce

its precise location. This process is known as

Trilateration. To be able to perform this calculation, the

GPS receiver must know two things; the locations of at

least three of the satellites it can see and the distances

to the satellites. The GPS receiver deduces this

information by analyzing high frequency radio signals

emitted by the satellites themselves. Using precise timing

measurements, the device can calculate the distance to each

satellite by analyzing how long it took for the emitted

signal to travel to the device from the satellite, known as

propagation time. This timing is calculated using what is

known as a pseudo-random code. At a previously determined

time, set by system designers, both the satellite and GPS

receivers begin running the same digital pattern dictated

by the code. The satellite transmits this signal precisely

as it is run.

Upon receipt of the satellites’ signals, the GPS

receiver compares the lag between its own code and that in

the received signals. The length of delays between the

signals is the signals’ travel time. Multiplying the delay

time by the speed of light, 3X10^8 m/s, results in the

distance traveled by the signal. Along with its

identifying information, GPS satellites transmit data

containing its current location and current time, as

 14

measure by the onboard atomic clock. Signals from the

satellites all broadcast on the same frequencies; using

Code Division Multiple Access (CDMA) allows messages from

individual satellites to be distinguished from others using

unique encodings for each satellite (the receiver must be

aware of these encodings in order to distinguish the

satellite signals). Once distances to the four satellites

are calculated and the locations of the satellites are

known, the intersection of all four distances will result

in one point indicating the receiver’s location

Due to the inability to spoof or fake a GPS signature

(with built in anti-spoofing in the signal transmitted), it

was a logical context on which to base access. Depending

on the device, the overall accuracy differences using GPS

are significant. With the circa 2000 removal of Selective

Availability, the intentional insertion of timing errors

into the GPS system to limit accuracy of non-military GPS

receivers, one can expect accuracies on the order of

10 meters, depending on the chipset installed in the

device.

4. Application Program Interfaces

Through the use of the LocationManager and

TelephonyManager classes built into the Android Java SDK, a

programmer can access a device’s IMSI, CID and GPS

location. These services allow applications to check for

periodic updates to the system’s location based on Global

Positioning System measurements, cellular identification

number, and/or a wireless router to which the device is

currently connected, utilizing the built-in device hardware

available [13]. Using a background service, these

 15

parameters can be periodically checked allowing a

programmer to base contexts on them [18].

F. SUMMARY

This chapter discussed the concept of Bring Your Own

Device policies, the advantages/disadvantages of those

policies, the Android operating system and its

advantages/disadvantages and mobile device sensors and

capabilities. It is meant to provide an understanding for

an understanding of concepts used in the architectural

design and prototype implementation described in the

following chapters.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. ARCHITECTURE

A. INTRODUCTION

This chapter presents an overview of the architecture

used to design a context-based application to include

background services, context checks, user authentication

and the secure enclave. It describes how the contexts

themselves are designed to include which contexts were

chosen, and why, and the design of the enclave and its

protection mechanisms.

B. APPLICATION CONTEXT DESIGN

The end-state goal of this thesis is to create a

service capable of securing applications on a mobile device

based on the contexts setup and controlled by the service.

Using the built-in hardware common to most mobile devices

and the Android SDK, it is possible to utilize the hardware

as locational/user verification checks in the application.

Once the contexts have been verified, the user can be

allowed to run the secured applications (enclave). Figure

3 depicts a use case for the context check portion of the

application.

 18

Figure 3. Context Check Use Case

1. Location Verification Context

The purpose of this context is to verify a user’s

location. An administrator or chaperone of restricted

information may not want anyone to access the information

if they are physically located outside of a specific

location. An example of this might be an emergency

responder located within a disaster area having access to

emergency medical data about certain persons residing

within the disaster area. The advantage of using location

as a context, is that most mobile devices have multiple

ways of determining and verifying their location (e.g.,

Base Transceiver Station (BTS) to which the device is

currently associated, wireless access point to which the

device is currently connected and GPS).

 19

a. Cellular Identification Number

Identification of the BTS to which the device is

associated can be used as a location identifier in certain

contexts, as long as the BTS is stationary. Since each BTS

identifier (CID) is geographically unique, using a

combination of the most recent BTSs to which the mobile

device has connected, a fairly reliable location can be

determined. Once the CID is obtained, the application

needs only to reference a table of approved CIDs to

determine if the context is met. If the CID to which the

device is associated is in the table of approved CIDs, the

context is met. Pairing a CID context check with a more

secure context is necessary due to the ability to spoof

CIDs.

b. Global Positioning System

A mobile devices geographical location can be a

strong and secure context on which to base access to the

enclave. Similar to CID, the mobile device will calculate

its geographical location using the built-in GPS system,

but instead of comparing the coordinates to a preset list

of approved coordinates, another calculation is done. The

application takes the approved coordinates and calculates a

radius around those coordinates, essentially creating a GPS

fence. If the device’s measured GPS coordinates fall

within the calculated GPS fence coordinates, the context is

met. To prevent unauthorized interference with the GPS

system, the system employs a method of encryption to

prevent spoofing. (A spoofing attack is a situation in

which one person or program successfully masquerades as

another by falsifying data and thereby gaining an

 20

illegitimate advantage.) Embedded within the transmitted

signals from the GPS satellites, lies the P-Code (precision

code), an encrypted Pseudorandom Number (PRN) unique to

each satellite to prevent spoofing. This difficulty in

spoofing a GPS signal makes it one of the strongest

contexts on which to base access to the enclave. The

following pseudo-code shows a sample calculation (Figure

4).

Figure 4. Context Pseudo-code

Once location has been verified for context

checking, verification of the user must be accomplished

prior to granting access to the secure enclave.

2. User Verification Context

The purpose of this context check is to verify the

identity of the user attempting to access the secure

enclave. Users can be authenticated in several different

ways, the most common being challenge-response. In this

application, challenge-response protocol was chosen for

administrator access and IMSI was chosen for user

verification.

 21

a. Challenge-Response

Challenge-response authentication is a protocol

in which one is presented with a question (challenge) and

must respond with a valid answer (response) to be

authenticated. The simplest example of challenge-response

is password authentication, where the challenge is the

password prompt and the response is the password.

b. International Mobile Subscriber Identity

As discussed earlier, the International Mobile

Subscriber Identity (IMSI) is a unique identifying number

associated with GSM and LTE mobile phone users. The

providers use this number as a unique identifier, stored on

the Subscriber Identity Module (SIM) card, installed in the

device, to verify the users identity with the system as

opposed to an International Mobile Equipment Identifier

number, which identifies a specific mobile device. This

application will use the IMSI as a verification of the

user’s identity as one of the contexts. Similar to CID,

the application will have a secure database that stores the

approved IMSIs, controlled by the system administrator,

which will allow access to the applications stored within

the enclave. Along with IMSI, a policy requiring the user

to lock their mobile devices with a complex password/pin

helps verify the identity of the user and strengthens the

security of the device.

C. ENCLAVE DESIGN

The enclave will consist of a list of applications

deemed to need special access controls. These applications

will be fully installed on the device, but the user will

 22

not have the ability to run them until they meet the

selected access controls (contexts).

The primary means of preventing access to the

applications residing within the enclave is a capability of

interrupting the launch process (intent) of the restricted

application. An Intent is an abstract description of an

operation to be performed, such as starting an activity.

When an application is launched, an intent is fired for the

main activity within the application being launched [14].

Recognition of this launch process, when properly

identified, allows it to be paused in order to query for

required context checks.

The administrator chooses the contexts that are

required to open a restricted application during the system

setup in the admin settings of the enclave application.

Here, the administrator can decide the contexts for which

he/she would like to check and the settings for those

contexts.

The design of the context checker is what enables the

enclave to be properly protected. A service that runs in

the background of the operating system periodically checks

the last known GPS coordinates, monitors currently

associated CID, and watches for firing of intents in order

to identify when the user has launched an protected

application.

When a user attempts to launch a protected application

the contexts that are required are checked individually.

Based on the results of the contexts queries, the user is

either granted, or denied, access to the protected

applications. There is no possible way to launch any of

 23

the applications under the enclave’s protection via the

user interfaces, without meeting the contexts. To ensure

proper security, the contexts to enter an enclaved

application are checked each and every time any protected

application is launched/re-launched.

D. SUMMARY

This chapter provided a high-level view of the

architecture of an application that securely restricts

access to other applications using hardware sensor readings

of the device as contexts on which to base access. The

major portions of the design are the application context

design and the design of the enclave itself. The next

chapter will discuss the actual implementation of this

architectural design into a working Android application.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

IV. IMPLEMENTATION

A. INTRODUCTION

This chapter explains in detail the implementation of

the architecture described in Chapter III of this thesis.

It includes coding methodology descriptions and

walkthroughs as the Administrator and a user each of which

meets or does not meet the required contexts to open a

protected application. The application was written for

rooted Android devices, firmware 1.6 and up, and consists

of 20 classes and over 2,000 lines of Java code. Root

permissions allow the application admin privileges allowing

it to access LogCat, to monitor for protected application

launches. The enclave application was installed and tested

on a Samsung Galaxy Note running Android OS 2.3.6

(codenamed Gingerbread) with root permissions.

The following sections discuss our Android application

that implements the architectural design discussed in

Chapter III of this thesis, hereafter referred to as the

enclave application. The enclave application implements

all of the features of the architectural design.

1. Key Features

 Administrator Login with challenge/response user
verification.

 Administrator capability to select mobile
device’s sensors to use as contexts.

 Administrator capability to modify contextual
requirements to launch enclaved applications.

 Administrator capability to lock ProgramManager
to prevent force-quit or uninstall of the enclave
application.

 26

 Ability to stop the launch of an enclaved
application unless the administrator-selected
contexts are satisfied.

B. ADMINISTRATOR

This section will describe system setup by an

administrator or person controlling the access to the

restricted information/application. It will discuss initial

install and setup of the application, security settings and

how to include applications in the enclave, to include an

explanation as to how the code accomplishes this.

1. Application Installation

The application will be provided to the administrator

as an APK (Android Package File), ready to install on the

desired device. During installation, the administrator

will be prompted to accept the user permissions required on

the device. The permissions required to run the

application are as follows: Fine GPS Location, Network

Communication, Read Sensitive Log Data, and Read Phone

Status and ID, system tools and root. Once installation is

complete, the application will place a launcher icon in the

Android application drawer labeled Latchkey App Protector.

Figure 5 shows the installation and root permissions

screens.

 27

Figure 5. Application Installation Screen

a. Permissions

The various permissions necessary to install and

run the enclave application enable the program to access

the features and perform the functions required to meet

architectural specifications. The Fine GPS Location and

Network Communication permissions are required to allow the

application to query the device for the necessary sensor

information to determine the phone’s location based on GPS

and CID, respectively. The Read Phone State and ID

permissions are required to allow the enclave application

to query for the IMSI associated with the installed SIM

card [15]. Root permissions are required to allow the

application to read phone logs and pause/kill the launch

activities of applications other than itself.

2. Admin Settings

After launching the application, root permissions are

required prior to continuing. If the enclave application is

installed on a non-rooted device, the program fails to

attain root permissions at this point, resulting in the

application force-quitting. The root permissions are

 28

required to read the LogCat to monitor for application

launches. Without access to LogCat, the enclave service

will not function as designed. If root permissions are

granted, the enclave application is launched and the

administrator is prompted for an admin password, defaulted

to 1234 after installation. Once the correct password is

entered, the administrator can now use the context menus

within the application to configure the security settings

and select the applications to be protected. Figure 6 shows

the application configuration screens.

Figure 6. Application Configuration Screens

a. Protection Settings

In the protection settings menu, the

administrator can select the contexts on which the enclave

access is to be based (i.e., IMSI, CID, and/or GPS). This

was done using a simple Boolean indicating whether the

context was selected or not. Upon selecting “Save

Settings” the selected context settings are saved using the

SharedPreferences class built into the Android SDK. The

SharedPreferences class provides a general framework that

allows you to save and retrieve persistent key-value pairs

 29

of primitive data types [16]. SharedPreferences can be used

to save any primitive data: booleans, floats, ints, longs,

and strings. This data will persist across user sessions

(even if your application is “killed”). Figure 7 depicts

the protection selection screen.

Figure 7. Application Protection Selection Screen

b. Change Password

The Change Password selection in the

configuration menu simply allows the administrator to

change the admin password, given that the old password is

known. The stored passwords are also stored in

SharedPreferences. It is important to note that a

compromise of the administrator password will compromise

the entire enclave application. Figure 8 is the password

change screen.

 30

Figure 8. Application Password Change Screen

c. Change IMSI

The Change IMSI selection in the configuration

menu allows the administrator to change the IMSIs on which

to base access to the protected applications. Here, using

a context menu, the administrator can add and delete IMSIs

that are saved in SharedPreferences. As discussed in

previous chapters, the IMSI is simply a unique identifier

associated with the SIM card installed on the device,

issued by the service provider, which can be spoofed and/or

duplicated, making it a poor context check if not used in

conjunction with other context parameters. Figure 9

depicts the IMSI options screens.

 31

Figure 9. Application Change IMSI Screen

d. Change CellID

The Change CellID selection from the

configuration menu allows the administrator to change the

Cellular Identification numbers on which to base access to

the protected applications. Like the Change IMSI option,

the administrator can add and delete CIDs using the context

menu, which is then stored in SharedPreferences. As with

IMSIs, CIDs can be spoofed and/or duplicated making it a

weak security context check on its own. It is also

important to note that a mobile device can jump between

several cellular towers even while stationary making it

necessary to add all CIDs geographically located in

proximity to each other, unless a specific CID is required.

Figure 10 depicts the change CID screens.

 32

Figure 10. Application Change CID Screen

e. Change Geolocation

The Change Geolocation selection from the

configuration menu allows the administrator to change the

GPS coordinates that the enclave application uses to build

the GPS fence on which to base access to the protected

applications. Changing the GPS coordinates only changes

the center point of the GPS fence used in the geolocation

context and not the size of the fence itself, which is a

fixed five nautical mile value. The GPS context check,

done during the launch of an enclaved application, verifies

that the device is geographically located within five

nautical miles of the administrator’s set GPS coordinates.

It is possible to set several different GPS locations that

are in proximity to each other to create a larger GPS

fence. The GPS options screens are shown in Figure 11.

 33

Figure 11. Application Change GPS Screen

3. Add App

The Add App selection from the context menu allows the

administrator to select the applications to protect (i.e.,

place under enclave protection). Once Add App is selected,

the enclave application provides the administrator with a

list of all Main activities stored on the device. A Main

activity is the activity within an application that allows

it to launch in a Dalvik VM [17]. Selecting a launch

activity, within this menu, adds it to a list stored in the

enclave applications SharedPreferences. It is only

possible to enter an application on the Android OS via the

applications associated Main activity, delineated in the

applications associated manifest file. Upon exiting this

menu, the administrator is presented with a list of the

application launch activities that are selected and stored

in SharedPreferences, which will be used later in the

background service.

It is important to note that selecting applications

that are to be locked are not the only selections that must

 34

be made on this step of the configuration. The

administrator must also lock any applications or system

settings that provide for stopping other applications or

uninstalling packages (i.e., program manager) [4] in order

to keep a user from force-quitting or uninstalling the

enclave application itself. This requires an in depth

knowledge of the launching applications and the system

settings of the device on which the enclave application is

to be installed. Failure to lock these features would

allow a malicious user to force-quit or uninstall the

enclave application thereby completely removing its

security features.

4. Start Hiding

Once the administrator has configured all of the

security settings for the enclave and selected the

applications that are to be included in the enclave, he/she

must click the Start Hiding button to enable the security

features and “lock the enclave.” Once the Start Hiding

button is clicked, the enclave application starts a

background service that monitors the Android LogCat log.

Android LogCat contains logs from various applications and

portions of the system that are collected in a series of

circular buffers, which then can be viewed and filtered by

the logcat command. LogCat can be viewed from an ADB shell

to view the log messages. ADB (Android Debug Bridge) is a

tool that comes with the Android SDK that allows you to

control and interface with your Android device [18].

The enclave application uses this method to monitor

the LogCat log for application launches. The background

service is essentially looking for activity launch events

 35

that correspond to the launch activities that were selected

by the administrator during the Add App portion of the

enclave application configuration. When an activity launch

is detected, the background service checks to see if the

activity being launched matches one selected by the

administrator to be protected.

C. USER

The intended user of the enclave application is a

person who requires access to restricted applications/

information when a preselected set of contexts is met. The

enclave application can be preinstalled on an issued device

or directly installed on a user’s personal device and

configured by a system administrator. Even when installed

on the user’s personal device, the administrator privileges

of the service are protected with a password. When the

user attempts to launch a restricted application one of two

things will occur: the contexts are satisfied and the

application launches or the contexts are not satisfied and

the launch of the application is blocked.

1. Launching a Protected Application

Upon attempting to launch a protected application, the

background service, running since the administrator

configured the enclave application, senses the launch via

LogCat. If the activity name matches one of the selected

activities to be protected, the activity of the protected

application is then halted and the context checking

activity of the enclave application is started.

 36

a. Contexts Satisfied

The context checking activity of the enclave

application checks to verify that the contexts configured

by the administrator during setup are met. IMSI, CID

and/or GPS coordinates are queried and checked to see if

they match the values stored in SharedPreferences. If the

contexts are met, the user is shown that the contexts are

satisfied and they are given the option of clicking

continue, thereby un-pausing the restricted application and

allowing it to run as usual. An “Access Granted” screen is

shown in Figure 12.

Figure 12. Context Monitor Screen

b. Contexts Not Met

As above, the context checking activity of the

restricted application, upon launch, will attempt to verify

if the contexts required to access a protected application

are satisfied. If any of the contexts set by the

administrator are not satisfied, the launching activity of

the restricted application is killed and the user is not

allowed to continue until the contexts are met. The access

 37

denied screen is shown in Figure 12. It is important to

note that if the user navigates away from an application

that is under protection, the contexts will be checked once

again upon returning, and in the event they are not met,

the user will not be allowed back into the application and

all unsaved data will be lost.

D. SUMMARY

In summary, the enclave application prototype

satisfies all of the architectural design requirements

presented in Chapter III of this thesis. The enclave

application has the capability to protect and restrict the

launch of selected applications on an Android device based

on selected contexts using the hardware sensors built into

the mobile device itself.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis has developed an advanced Android service

extending the ideas presented in a thesis written by Kevin

J. LaFrenier [2] in September 2011. The idea was to create

a method of protecting restricted applications on an

Android device from compromise by constraining the

applications’ launch based on a set of contexts over which

the user has no control.

We used the Android Java SDK and its associated

libraries in the Eclipse IDE (Integrated Development

Environment) to build a prototype application that

prevented the launch of other, preselected applications,

based on a set of contexts measured by the mobile device’s

hardware.

The first portion of the thesis defined the contexts

on which to base access to the protected applications. The

first context used in the service was the physical location

of the mobile device. The enclave service uses two means

of determining location: Cellular Identification Number

assigned to the Base Transceiver Station and Global

Positioning System Coordinates. Both of these values are

measured using the built-in Android LocationManager class

utilizing the mobile device’s hardware. Once these values

are obtained, they are crosschecked with the list of

approved CIDs and GPS coordinates; the list of approved

values being configured on installation by the system

administrator to either allow or no to allow access to the

sensitive applications, also selected by the administrator.

 40

The second context coded into the service is the

International Mobile Subscriber Identity (IMSI). Since

IMSIs are attached to user accounts, it was chosen as a

pseudo-verification of the user and/or device. The

TelephonyManager class of the Android SDK is used to query

for the IMSI assigned to the SIM card installed on the

device. This measured IMSI is then crosschecked with a

list of approved IMSIs to determine whether or not to allow

access to a protected application.

Based on the measured contexts, once met, the user is

allowed to launch any of the protected applications. If

one or more of the selected contexts are not met, the

enclave service uses the Android OS to block the launch of

the application, until said contexts are satisfied. Once

set-up, the enclave service successfully restricts

launching an application based on a set of contexts

utilizing hardware already installed on the device. Since

the contexts are only checked at launch time, there is no

protection if any of the contexts fails after the user has

launched an application.

B. FUTURE WORK

The design and creation of this prototype enclave

service was intended to show that it is possible to build a

service that successfully restricts access to other

applications based on a set of contexts. There are still

several areas requiring further research prior to

deployment. These areas focus on user identification,

multi-level contexts, remote context changes, and user

termination resistance.

 41

1. User Identification

In creating the enclave application, the idea of user

identification was ignored in order to focus on designing a

protection scheme reliant on the mobile device’s sensors as

contexts. In a real-world deployment of a security

service, the users themselves must be verified prior to

allowing access to restricted applications. The addition

of a context employing a challenge/response protocol would

serve as a reliable means of user identification prior to

using the mobile device’s resources to unnecessarily check

contexts in the event the user is unauthorized.

2. Multi-level Contexts

A single device might contain differing levels of

protected applications. In this situation, an enclave

service that allows for the use of differing contexts based

on the required protection level of the application the

user is attempting to access will prevent an over-

protection of certain applications. As a result, a single

device might contain multiple applications at differing

protection levels, each able to be accessed at different

moments in time/location by different users.

A more complicated, tiered-context check would also

make the enclave service more resilient to compromise. An

off-device context check, requiring the presence of other

devices and/or users would provide this increased

protection. A simple presence check of other devices in

the area in order to access restricted operations would

prevent a compromised device, which may have fallen into

malicious hands, from accessing restricted resources,

thereby mitigating the compromise of the device.

 42

Establishing a means of monitoring contexts while the

user is accessing a protected application so that it can be

killed if any of them fail at any time would provide an

increased layer of protection. This service would provide

real-time protection to the enclaved applications.

3. Remote Context Changes

In the event that a device is lost or stolen, there is

currently no means of keeping a malicious user from

accessing the applications protected by the enclave service

if the contexts are met. A periodic means of updating the

contexts stored in the SharedPreferences of the enclave

application would provide an administrator or information

manager the ability to remove contexts, essentially locking

a device out of the protected applications. The ability to

add or change contexts remotely allows an administrator to

grant/remove a device user’s access to a protected

application, to which the user would not otherwise have had

access.

4. User Termination Resistance

In the prototype enclave service, there are no

standard protections keeping a user from self-terminating

the enclave service. The administrator, at setup time,

must ensure that any application with force-stop and

uninstall capabilities (i.e., Android PackageManager) are

also under the enclave application’s protection. This

ensures that the contexts set to protect the applications

within the enclave are met prior to allowing a user to be

able to uninstall/force-quit any of those applications.

 43

There are currently no automatic protections for keeping

the enclave application from being force-quit or

uninstalled by the user.

In the event of a full mobile device reboot, the

enclave service is not included in the boot procedure,

therefore, it will not start and thus leaving the

applications, previously protected based on context checks

prior to the reboot, vulnerable. The simple addition of an

intent filter monitoring for the BOOT_COMPLETE action can

start the background service in the event of a device

reboot, making the enclave application more resilient to

user termination.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

LIST OF REFERENCES

[1] GSM World, “History,” [Online]. Available:
http://www.gsmworld.com/about- us/history.htm.

[2] K. LaFrenier “Mobile security enclaves.” M.S. thesis,
Computer Science, Naval Postgraduate School,
California, 2011.

[3] Android, “What is Android?” [Online]. Available:
http://developer.android.com/guide/basics/what-is-
android.html.

[4] Android. “Security architecture.” [Online]. Available:
http://developer.android.com/guide/topics/security/per
missions.html.

[5] Dalvik Virtual Machine, “Introduction.” [Online].
Available: http://www.dalvikvm.com.

[6] Dalvik Virtual Machine, “DEX file format.” [Online].
Available: http://www.dalvikvm.com.

[7] J. Six, “Android architecture.” In Application
Security for the Android Platform, Sebastopol, CA,
O’Rielly Media 2011, pp 13–24.

[8] Wikipedia. “International mobile subscriber identity
number,” [Online]. Available:
http://en.wikipedia.org/wiki/International_Mobile_Subs
criber_Identity.

[9]]K. Vedder, “GSM: Security, services and the SIM,”
Computer Science, 1528, pp. 233, 1998.

[10] ETSI, “Digital cellular telecommunications systems;
specifications of the Subscriber Identity Module –
Mobile Equipment Interface (SIM-ME), “GSM 11.11,
pp.33, 1995.

[11] Wikipedia, “Cell ID,” [Online]. Available:
http://en.wikipedia.org/wiki/Cell_ID.

 46

[12] Space and Tech, “NAVSTAR GPS – Summary.” [Online].
Available:
http://www.spaceandtech.com/spacedata/constellations/n
avstar-gps_consum.shtml.

[13] Android, “Package android.Location,” [Online].
Available:
http://developer.android.com/references/android/locati
on/package-summary.html.

[14] Android,”Intents and intent filters,” [Online].
Available:
http://developer.android.com/guide/topics/intents/inte
nts-filters.html.

[15] Android, “Public static final class
Manifest.permission,” [Online]. Available:
http://developer.android.com/references/android/Manife
st.permission.html.

[16] J. Six, “Application permissions.” In Application
Security for the Android Platform, Sebastopol, CA:
O’Rielly Media 2011, pp. 25–41.

[17] Android,”Activities,” [Online]. Available:
http://developer.android.com/guide/topics/fundamentals
/activities.html.

[18] Android, “Background services,” January, 2012
http://developer.android.com/guide/components/services
.html.

 47

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Dr. Gurminder Singh
 Naval Postgraduate School
 Monterey California

4. Mr. John Gibson
 Naval Postgraduate School
 Monterey, California

